
www.jdojo.com  Page 1 of 8 

 Translucent Window in Java 7 By Kishori Sharan 

Translucent Window in Java 7 

Published on January 17, 2012 

----------------------------------------------------------------------------------------------------------------------------- ------ 

Let us define three terms - transparent, translucent, and opaque, before we discuss how to use a 
translucent window in Swing. If something is transparent, you can see through it. For example, 
clear water is transparent. If something is opaque, you cannot see through it. For example, a 
concrete wall is opaque. If something is translucent, you can see through it, but not clearly. If 
something is translucent, it partially allows light to pass through. For example, a plastic curtain is 
translucent. The terms, “transparent” and “opaque”, describe two opposite states, whereas the term 
“translucent” describes a state between “transparent” and “opaque”.  

Java 7 lets you define the degree of translucency of a window, e.g., a JFrame. A 90% translucent 

window is 10% opaque. The degree of translucency for a window can be defined using the alpha 
value of the color component for a pixel. You can define the alpha value of a color using the 

constructors of the Color class as shown below. 

Color(int red, int green, int blue, int alpha) 

Color(float red, float green, float blue, float alpha)  

The value for the alpha argument is specified between 0 and 255, when the color components are 

specified in terms of int values. For the float type arguments, its value is between 0.0 and 1.0. 

The alpha value of 0 or 0.0 means transparent (100% translucent or 0% opaque). The alpha 

value of 255 or 1.0 means opaque (0% translucent or not transparent).  

Java 7 supports three forms of translucency in a window, which are represented by the following 

three constants in the WindowTranslucency enum. 

 PERPIXEL_TRANSPARENT: In this form of translucency, a pixel in a window is either opaque or 

transparent. That is, the alpha value for a pixel is either 0.0 or 1.0. 

 TRANSLUCENT: In this form of translucency, all pixels in a window have the same translucency, 

which can be defined by an alpha value between 0.0 and 1.0. 

 PERPIXEL_TRANSLUCENT: In this form of translucency, each pixel in a window can have its 

own alpha value between 0.0 and 1.0. This form lets you define the translucency in a window 
on a per pixel basis. 

Not all platforms support all the three forms of translucency in a window. You must check for the 
supported forms of translucency in your program before using them. Otherwise, your code may 

throw an UnsupportedOperationException. The isWindowTranslucencySupported() 

method of the GraphicsDevice class lets you check the forms of translucency that are supported 



www.jdojo.com  Page 2 of 8 

 Translucent Window in Java 7 By Kishori Sharan 

on a platform. Listing 1 demonstrates how to check for translucency support on a platform. The 
code in this listing is short and self-explanatory.  

TIP 
Using a translucent window on a platform is dependent on the form of translucency supported by 
the platform. Before using a specific form of translucency, you must check if that form of 
translucency is supported on the platform.  Otherwise, your program may run fine on one platform 
and generate errors on another. This check is omitted in the examples to keep the code shorter. 

Listing 1: Checking for a translucency support on a platform 

// TranslucencySupport.java 

package com.jdojo.chapter1; 

 

import java.awt.GraphicsDevice; 

import java.awt.GraphicsEnvironment; 

import static java.awt.GraphicsDevice.WindowTranslucency.*; 

 

public class TranslucencySupport { 

 public static void main(String[] args) { 

  GraphicsEnvironment graphicsEnv = 

    GraphicsEnvironment.getLocalGraphicsEnvironment(); 

 

  GraphicsDevice graphicsDevice = 

    graphicsEnv.getDefaultScreenDevice(); 

 

  // Print the translucency supported by the platform 

  boolean isSupported = 

    graphicsDevice.isWindowTranslucencySupported(  

        PERPIXEL_TRANSPARENT); 

  System.out.println("PERPIXEL_TRANSPARENT supported:" +  

                     isSupported); 

   

  isSupported = 

   graphicsDevice.isWindowTranslucencySupported(TRANSLUCENT); 

  System.out.println("TRANSLUCENT supported:" + isSupported); 

   

  isSupported = graphicsDevice.isWindowTranslucencySupported(  

              PERPIXEL_TRANSLUCENT); 

  System.out.println("PERPIXEL_TRANSLUCENT supported:" +  

                     isSupported); 

 } 

} 

Let us see a uniform translucent JFrame in action. You can set the translucency of a JFrame using 

the setOpacity(float opacity) method. The value for the specified opacity must be 



www.jdojo.com  Page 3 of 8 

 Translucent Window in Java 7 By Kishori Sharan 

between 0.0f and 1.0f. Before you call this method on a window, the following three conditions must 
be met. 

 The platform must support the TRANSLUCENT translucency.  You can use the logic from Listing 

1 to check if the TRANSLUCENT translucency is supported by the platform.  

 The window must be undecorated. You can make a JFrame or JDialog undecorated by 

calling the setUndecorated(false) method on them. 

 The window must not be in full-screen mode. You can put a window in full-screen mode using 

the setFullScreenWindow(Window w) method of the GraphicsDevice class. 

If not all of the above-mentioned conditions are met, setting the opacity of a window other than 1.0f 

throws an IllegalComponentStateException. Listing 2 demonstrates how to use a uniform 

translucent JFrame. The following two statements in the initFrame() method in the listing is of 

interest to get a translucent JFrame. The first statement makes sure that the frame is undecorated, 

and the second one sets the translucency of the frame in terms of opacity.  

// Make sure the frame is undecorated 

this.setUndecorated(true); 

   

// Set 40% opacity. That is, 60% translucency. 

this.setOpacity(0.40f); 

When you run this program, you can see the contents on your screen through the JFrame display 

area. A Close button is added to the frame to close the frame at runtime. 

Listing 2: Using a uniform translucent JFrame 

// UniformTranslucentFrame.java 

package com.jdojo.chapter1; 

 

import java.awt.BorderLayout; 

import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import javax.swing.JButton; 

import javax.swing.JFrame; 

 

public class UniformTranslucentFrame extends JFrame { 

 private JButton closeButton = new JButton("Close"); 

  

 public UniformTranslucentFrame(String title) { 

  super(title); 

  initFrame(); 

 } 

  

 public void initFrame() { 

  this.setDefaultCloseOperation(EXIT_ON_CLOSE); 

   



www.jdojo.com  Page 4 of 8 

 Translucent Window in Java 7 By Kishori Sharan 

  // Make sure the frame is undecorated 

  this.setUndecorated(true); 

   

  // Set 40% opacity. That is, 60% translucency. 

  this.setOpacity(0.40f); 

   

  // Set its size 

  this.setSize(200, 200); 

   

  // Center it on the screen 

  this.setLocationRelativeTo(null); 

   

  // Add a button to close the window 

  this.add(closeButton, BorderLayout.SOUTH); 

   

  closeButton.addActionListener(new ActionListener() { 

   @Override 

   public void actionPerformed(ActionEvent e) { 

    System.exit(0); 

   }    

  }); 

 } 

 

 public static void main(String[] args) { 

  UniformTranslucentFrame frame =  

    new UniformTranslucentFrame("Translucent Frame");  

  frame.setVisible(true);   

 } 

} 

Let us see a per-pixel translucent JFrame in action. We will create a gradient effect (fading effect) 

inside a JPanel by setting the alpha value for its background color different for different pixels in its 

display area. You can get a per-pixel translucency in different ways. The easiest way to see it in 

action is to use a JPanel with a background color, which has its alpha component set to a desired 

translucency. The following snippet of code illustrates this method. 

// Create a frame and set its properties 

JFrame frame = new JFrame(); 

frame.setUndecorated(true); 

frame.setBounds(0, 0, 200, 200); 

   

// Set the background color of the frame to all zero 

// so that the per-pixel translucency works 

frame.setBackground(new Color(0, 0, 0, 0)); 

 

// Create a blue JPanel with 128 alpha component   

JPanel panel = new JPanel(); 

int alpha = 128; 



www.jdojo.com  Page 5 of 8 

 Translucent Window in Java 7 By Kishori Sharan 

Color bgColor = new Color(0, 0, 255, alpha); 

panel.setBackground(bgColor); 

   

// Add the JPanel to the frame and display it   

frame.add(panel); 

frame.setVisible(true); 

Two things are different in the above snippet of code. First, it sets the background color of the 
frame with all color components set to zero to achieve the per-pixel translucency. Second, it sets 

the background color of the JPanel, which has an alpha component, to 128. You can add another 

JPanel, with a different alpha component for its background color, to the JFrame. This will give 

you two areas on the JFrame, whose pixels use different translucency. 

You can achieve a little fancier result if you use an object of the GradientPaint class to paint 

your JPanel. A GradientPaint object fills a Shape with a linear gradient pattern. It requires you 

to specify two points, p1 and p2, and a color for each point, c1 and c2. The color on the connecting 
line between p1 and p2 will proportionally change from c1 to c2. 

Listing 3 contains the code for a custom JPanel, which uses a GradientPaint object to paint its 

area. The background color for the JPanel is specified in its constructor. We have overridden its 

paintComponent() to provide the custom painting effect. The gradient color pattern is provided 

by Graphics2D. The method checks if we have a Graphics2D object. Our starting point, p1, is 

the upper left corner of the JPanel. The color for the starting point, c1, is the same as the one 

passed in the constructor. We use 255 as its alpha component. The second point, p2, is the upper 

right corner of the JPanel, with the same color that uses a zero alpha component. This will give 

the JPanel a gradient effect - from opaque at the left edge to gradually turning transparent at the 

right edge. You can experiment by changing the two points and the alpha component values for 

them to get a different gradient pattern. It sets the GradientPaint object as the Paint object for 

the Graphics2D object and calls the fillRect() method to paint the area of the JPanel. 

Listing 3: A custom JPanel with a gradient color effect using the per-pixel translucency 

// TranslucentJPanel.java 

package com.jdojo.chapter1; 

 

import java.awt.Color; 

import java.awt.GradientPaint; 

import java.awt.Graphics; 

import java.awt.Graphics2D; 

import java.awt.Paint; 

import javax.swing.JPanel; 

 

public class TranslucentJPanel extends JPanel { 

 private int red = 240; 

 private int green = 240; 

 private int blue = 240; 

 



www.jdojo.com  Page 6 of 8 

 Translucent Window in Java 7 By Kishori Sharan 

 public TranslucentJPanel(Color bgColor) { 

  this.red = bgColor.getRed(); 

  this.green = bgColor.getGreen(); 

  this.blue = bgColor.getBlue(); 

 } 

 

 @Override 

 protected void paintComponent(Graphics g) { 

  if (g instanceof Graphics2D) {   

   int width = this.getWidth(); 

   int height = this.getHeight(); 

   float startPointX = 0.0f; 

   float startPointY = 0.0f; 

   float endPointX = width; 

   float endPointY = 0.0f; 

   Color startColor = new Color(red, green, blue, 255); 

   Color endColor = new Color(red, green, blue, 0); 

    

   // Create a GradientPaint object 

   Paint paint = new GradientPaint(startPointX, startPointY,  

                                   startColor, 

                                   endPointX, endPointY,  

                                   endColor);  

 

   Graphics2D g2D = (Graphics2D) g; 

   g2D.setPaint(paint); 

   g2D.fillRect(0, 0, width, height); 

  } 

 } 

} 

Listing 4 contains the code to see the per-pixel translucency in a JFrame in action. It adds three 

instances of the TranslucentJPanel class with the background color of red, green, and blue. A 

Close button is added to the frame to close it at runtime. Figure 1 shows the resulting screen. You 
will not be able to see the colors as the figure is printed in black-and-white. However, you can see 
the gradient effect (fading effect). Each panel is more translucent as it goes from left to right. The 

figure shows the part of the screen that was in the background of the JFrame at the time it was 

displayed. 



www.jdojo.com  Page 7 of 8 

 Translucent Window in Java 7 By Kishori Sharan 

Figure 1: Per-pixel translucency in action 

 

Listing 4: Using per-pixel translucency in a JFrame 

// PerPixelTranslucentFrame.java 

package com.jdojo.chapter1; 

 

import java.awt.Color; 

import java.awt.GridLayout; 

import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import javax.swing.JButton; 

import javax.swing.JFrame; 

 

public class PerPixelTranslucentFrame extends JFrame { 

 private JButton closeButton = new JButton("Close"); 

  

 public PerPixelTranslucentFrame(String title) { 

  super(title); 

  initFrame(); 

 } 

  

 public void initFrame() { 

  this.setDefaultCloseOperation(EXIT_ON_CLOSE); 

   

  // Make sure the frame is undecorated 

  this.setUndecorated(true); 

  

  // Set the background color with all components as zero 

  // so that per-pixel translucency is used 

  this.setBackground(new Color(0,0,0,0)); 

   

  // Set its size 



www.jdojo.com  Page 8 of 8 

 Translucent Window in Java 7 By Kishori Sharan 

  this.setSize(200, 200); 

   

  // Center it on the screen 

  this.setLocationRelativeTo(null); 

   

  this.getContentPane().setLayout(new GridLayout(0, 1));  

   

  // Create and add three JPanel with different color gradients 

  this.add(new TranslucentJPanel(Color.RED)); 

  this.add(new TranslucentJPanel(Color.GREEN)); 

  this.add(new TranslucentJPanel(Color.BLUE)); 

   

  // Add a button to close the window 

  this.add(closeButton);   

  closeButton.addActionListener(new ActionListener() { 

   @Override 

   public void actionPerformed(ActionEvent e) { 

    System.exit(0); 

   }    

  }); 

 } 

 

 public static void main(String[] args) { 

  PerPixelTranslucentFrame frame =  

   new PerPixelTranslucentFrame("Per-Pixel Translucent Frame");  

  frame.setVisible(true);   

 } 

} 

 

 


	Translucent Window in Java 7

