
www.jdojo.com Page 1 of 6

 The Fork/Join Framework in Java 7 By Kishori Sharan

The Fork/Join Framework in Java 7

BY

Kishori Sharan

January 20, 2012

Code examples in this post are from Chapter 7. Threads of the book Harnessing Java 7 (Volume 2)

--- -----

Java 5 and Java 6 added several concurrency constructs to the java.util.concurrent

package to help developers deal with problems involving advanced level of concurrency. The
executor framework was one of the several great additions in Java 5. Java 7 added a new
implementation of the executor service, which is known as a fork/join framework. The focus of the
fork/join framework is to solve those problems efficiently, which may use the divide-and-conquer
algorithm, by taking advantage of the multiple processors on a machine. Before Java 7, we had
several Java constructs to help us solve the problems that involved concurrency. The fork/join
framework helps us solve the problems that involve parallelism. Typically, the fork/join framework is
suitable in a situation where:

 A task can be divided in multiple subtasks that can be executed in parallel.

 When subtasks are finished, the partial results can be combined to get the final result.

The fork/join framework creates a pool of threads to execute the subtasks. When a thread is waiting
on a subtask to finish, the fork/join framework uses that thread to execute other pending subtasks
of other threads. The technique of an idle thread executing other thread’s task is called work
stealing. The fork/join framework uses a work-stealing algorithm to enhance the performance.

The following four classes are central to learning the fork/join framework. All of them are in the

java.util.concurrent package.

 ForkJoinPool

 ForkJoinTask

 RecursiveAction

 RecursiveTask

An instance of the ForkJoinPool class represents a thread pool. An instance of the

ForkJoinTask class represents a task. The ForkJoinTask class is an abstract class. It has

two concrete subclasses: RecursiveAction and RecursiveTask. The framework supports two

http://www.amazon.com/author/kishorisharan
http://www.amazon.com/Harnessing-Java-Comprehensive-Approach-Learning/dp/146624464X/ref=tmm_pap_img_popover

www.jdojo.com Page 2 of 6

 The Fork/Join Framework in Java 7 By Kishori Sharan

types of tasks: a task that does not yield a result and a task that yields a result. An instance of the

RecursiveAction class represents a task that does not yield a result. An instance of the

RecursiveTask class represents a task that yields a result.

Both classes, RecursiveAction and RecursiveTask, provide an abstract compute() method.

Your class whose object represents a fork/join task should inherit from one of these classes and

provide an implementation for the compute() method. Typically, the logic inside the compute()

method is written on the following pattern.

if (Task is small) {

 Solve the task directly.

}

else {

 Divide the task into subtsaks.

 Launch the subtasks asynchronously (the fork stage).

 Wait for the subtasks to finish (the join stage).

 Combine the results of all subtasks.

}

The following two methods of the ForkJoinTask class provide two important features during a

task execution.

 The fork() method launches a new subtask from a task for an asynchronous execution.

 The join() method lets a task wait for another task to complete.

Using the fork/join framework involves the following five steps.

Step-1: Declaring a class to represent a task

Create a class inheriting from the RecursiveAction or RecursiveTask class. An instance of

this class represents a task that you want to execute. If your task yields a result, you need to inherit

it from the RecursiveTask class. Otherwise, you would inherit it from the RecursiveAction

class. The RecursiveTask is a generic class. It takes a type parameter, which is the type of the

result of your task. A MyTask class that returns a Long result may be declared as follows.

public class MyTask extends RecursiveTask<Long> {

 /* Code for your task goes here */

}

Step-2: Implementing the compute() method

The logic to execute your task goes inside the compute() method of your class. The return type of

the compute() method is the same as the type of the result that your task returns. The declaration

for the compute() method of the MyTask class would look as shown below.

www.jdojo.com Page 3 of 6

 The Fork/Join Framework in Java 7 By Kishori Sharan

public class MyTask extends RecursiveTask<Long> {

 public Long compute() {

 /* Logic for the task goes here */

 }

}

Step-3: Creating a fork/join thread pool

You can create a pool of worker threads to execute your task using the ForkJoinPool class. The

default constructor of this class creates a thread of pool, which has the same parallelism as the
number of processors available on the machine.

ForkJoinPool pool = new ForkJoinPool();

Other constructors let you specify the parallelism and other properties of the pool.

Step-4: Creating the fork/join task

You need to create an instance of your task.

MyTask task = MyTask();

Step-5: Submit the task to the fork/join pool for execution

You need to call the invoke() method of the ForkJoinPool class passing your task as an

argument. The invoke() method will return the result of the task, if your task returns a result. The

following statement will execute our task.

long result = pool.invoke(task);

Let us consider a simple example of using the fork/join framework. We will generate a few random
integers and compute their sum. Listing 1 has the complete code for our task. The class is named

RandomIntSum. It extends RecursiveTask<Long>, because it yields a result of Long type. The

result is the sum of all random integers. It declares a randGenerator instance variable, which is

used to generate a random number. The count instance variable stores the number of random

numbers that we want to use. The value for the count instance variable is set in the constructor.

The getRandomInteger() method of the RandomIntSum class generates a random integer

between 1 and 100, prints a message with the integer value on the standard output, and returns the
random integer.

The compute() method contains the main logic to perform the task. If the number of random

numbers to use is 1, it computes the result and returns it to the caller. If the number of random
number is more than one, it launches as many subtasks as the number of random numbers. Note
that if we use ten random numbers, it will launch ten subtasks, because each random number can
be computed independently. We will need to combine the results from all subtasks. Therefore, we

www.jdojo.com Page 4 of 6

 The Fork/Join Framework in Java 7 By Kishori Sharan

need to keep the references of the subtask for later use. We use a List to store the references of

all subtasks. Note the use of the fork() method to launch a subtask. The following snippet of

code performs this logic.

List<RecursiveTask<Long>> forks = new ArrayList<>();

for(int i = 0; i < this.count; i++) {

 RandomIntSum subTask = new RandomIntSum(1);

 subTask.fork();

 /* Keep the subTask references to combine the results at the end */

 forks.add(subTask);

}

Once all subtasks are launched, we need to wait on all subtasks to finish and combine all random
numbers to get the sum. The following snippet of code performs this logic. Note the use of the

join() method, which will make the current task wait on the subtask to finish.

for(RecursiveTask<Long> subTask : forks) {

 result = result + subTask.join();

}

Finally, the compute() method returns the result, which is the sum of all the random numbers.

Listing 2 has the code to execute a task, which is an instance of the RandomIntSum class.

This is a very simple example of using the fork/join framework. You are advised to explore the

fork/join framework classes to know more about the framework. Inside the compute() method of

your task, you can have complex logic to divide tasks into subtasks. Unlike in our example, you
may not know in advance how many subtasks you need to launch. You may launch a subtask,
which may launch another subtask and so on.

Listing 1: A ForkJoinTask class to compute the sum of a few random integers

// RandomIntSum.java

package com.jdojo.chapter7;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

import java.util.concurrent.RecursiveTask;

public class RandomIntSum extends RecursiveTask<Long> {

 private static Random randGenerator = new Random();

 private int count;

 public RandomIntSum(int count) {

 this.count = count;

 }

www.jdojo.com Page 5 of 6

 The Fork/Join Framework in Java 7 By Kishori Sharan

 @Override

 protected Long compute() {

 long result = 0;

 if (this.count <= 0) {

 return 0L; /* We do not have anything to do */

 }

 if (this.count == 1) {

 /* Compute the number directly and return the result */

 return (long) this.getRandomInteger();

 }

 /* Multiple numbers. Divide them into many single tasks. Keep

 the references of all tasks to call join() method later */

 List<RecursiveTask<Long>> forks = new ArrayList<>();

 for(int i = 0; i < this.count; i++) {

 RandomIntSum subTask = new RandomIntSum(1);

 subTask.fork();

 /* Keep the subTask references to combine the results

 later */

 forks.add(subTask);

 }

 /* Now wait for all subtasks to finish and combine the result */

 for(RecursiveTask<Long> subTask : forks) {

 result = result + subTask.join();

 }

 return result;

 }

 public int getRandomInteger() {

 /* Generate the next randon integer between 1 and 100 */

 int n = randGenerator.nextInt(100) + 1;

 System.out.println("Generated a random integer: " + n);

 return n;

 }

}

Listing 2: Using a fork/join pool to execute a fork/join task

// ForkJoinTest.java

package com.jdojo.chapter7;

www.jdojo.com Page 6 of 6

 The Fork/Join Framework in Java 7 By Kishori Sharan

import java.util.concurrent.ForkJoinPool;

public class ForkJoinTest {

 public static void main(String[] args) {

 /* Create a ForkJoinPool to run the task */

 ForkJoinPool pool = new ForkJoinPool();

 /* Create an instance of the task */

 RandomIntSum task = new RandomIntSum(3);

 /* Run the task */

 long sum = pool.invoke(task);

 System.out.println("Sum is " + sum);

 }

}

Output: (You may get a different output.)

Generated a random integer: 62

Generated a random integer: 46

Generated a random integer: 90

Sum is 198

	The Fork/Join Framework in Java 7

