
 Understanding Method Binding in Java By Kishori Sharan

Understanding Method Binding in Java

By Kishori Sharan Published on: February 6, 2012 at www.jdojo.com

--- -----

Method binding is a mechanism of associating a method call in Java code to the declaration and
implementation of the method being called. When we mention the phrase “declaration of the method”, we
are referring to the method signature, which consists of the method name, and the order and the data
type of its parameters. When we mention the phrase “implementation of the method”, we are referring to
the body of the method that executes at runtime as part of the method call.

The compiler always decides the signature of the called method. Depending on the method type (static,
non-static, and interface), the compiler or the runtime decides what implementation of the method is
executed at runtime.

Let us consider three Java programs listed in Listing 1, Listing 2, and Listing 3.

Listing 1: An Employee class

// Employee.java

package com.jdojo.blogs.methodbinding;

public class Employee {

 public void setSalary(double salary) {

 System.out.println("Inside Employee.setSalary()");

 }

}

Listing 2: A Manager class

// Manager.java

package com.jdojo.blogs.methodbinding;

public class Manager extends Employee {

 public void setSalary(int salary) {

 System.out.println("Inside Manager.setSalary()");

 }

}

Listing 3: A Test class to test method binding

// Test.java

package com.jdojo.blogs.methodbinding;

public class Test {

 public static void main(String[] args) {

 /* Create a Manager object and assign its reference to a

 variable emp of the Employee type

 */

 Employee emp = new Manager();

 /* Call the setSalary() method */

http://jdojo.com/
http://www.jdojo.com/

 Understanding Method Binding in Java By Kishori Sharan

 int salary = 12000;

 emp.setSalary(salary); /* Which setSalary() method is called.

 Employee.setSalary() or Manager.setSalary() */

 }

}

Output:

Can you tell what is printed when the Test class is run?

The following is my favorite question, which I ask in written tests for Java developers. So far, none of the
Java developers has answered this question correctly. Let us see if you can answer this question
correctly with a correct explanation.

What is printed on the standard output when the Test class is run? Does it print “Inside

Employee.setSalary()” or “Inside Manager.setSalary()”?

The correct answer is “Inside Employee.setSalary()”. To understand the output, you need to

read the full post and make sure that you understand the method binding mechanism in Java.

The following statement in the Test class declares an emp reference variable of Employee type and

assign it an object of the Manager class.

Employee emp = new Manager();

The above statement compiles and runs fine, because of the upcasting rules in Java, which states, “An
object of a subclass can be assigned to a variable of a superclass.”

The following snippet of code calls the setSalary() method on the emp reference variable.

int salary = 12000;

emp.setSalary(salary);

The setSalary() method is a non-static method. The emp reference variable holds a reference to a

Manager object. A common understanding (and misunderstanding as well) among the Java developers is

that a non-static method call is bound at runtime, so the Java runtime will decide which setSalary()

method to call in the emp.setSalary(salary) statement. However, that is only half of the story. Since

most of the textbooks go only up to this extent to describe the method binding mechanism, readers of
those textbooks never get past this fact, and hence, keep making mistakes like answering the above

question wrong. Most of the Java developers think that the emp.setSalary(salary) method call is

bound to the setSalary(int) method of the Manager class, because the emp reference variable holds

a reference of a Manager object and the method call uses an int argument, which is matched to the

setSalary() method of the Manager class. If you thought the same way (and most likely you did), you

are wrong. So, here is the full story of method binding in Java.

The following are the two parts of a method, and two steps in a method binding.

 Method signature - the method name, the order and the data type of the formal parameters

 Method implementation - body of the method, which executes at runtime

 Compile-time binding - performed by the compiler

 Runtime binding - performed by the Java runtime

www.jdojo.com Page 3 of 6

 Understanding Method Binding in Java By Kishori Sharan

Table 1 lists the method types, method parts and the stages when they are bound.

Table 1: Method types and the stages when a part of the method is bound

Method Type Compile-time Binding Runtime Binding

Non-Static Method Signature Method Implementation

Static Method Signature
Method Implementation

It is clear from Table 1 that the signature of a method is always bound at compile-time. That is, the
compiler always decides the signature of the called method - it does not matter if a method is a static or
non-static method. Let us apply this rule to the following statement.

emp.setSalary(salary);

First, the compiler determines the compile-time (also known as static or declared type) of the emp

reference variable. Since the emp reference variable has been declares of Employee type, the compile-

time type of the emp variable is Employee. The compiler looks for a compatible method signature

(declared or inherited), setSalary(int), in the Employee class. It finds a setSalary(double)

method in the Employee class, which is compatible to setSalary(int) method call, after the

argument widening from int to double. The compiler binds the emp.setSalary(salary) method call

to a method setSalary(double). Note that the compiler has bound the call to a method

setSalary(), which accepts a double argument. The argument of the called method setSalary()

has already been decided to double, and it cannot be changed at runtime. Can we prove this fact? Yes.

We can prove it by dissembling the class file for the Test class. We need to use the javap tool to

dissemble the Test.class file. The javap tool is located in the JAVA_HOME\bin folder, where

Java_HOME is the JDK installation folder. You can run the javap tool as follows. The -c option

dissembles the byte code and prints it on the standard output.

javap -cp YOUR-CLASSPATH-GOES-HERE -c com.jdojo.blogs.methodbinding.Test

Output of the javap tool:

Compiled from "Test.java"

public class com.jdojo.blogs.methodbinding.Test {

 public com.jdojo.blogs.methodbinding.Test();

 Code:

 0: aload_0

 1: invokespecial #1 // Method java/lang/Object."<init>":()V

 4: return

 public static void main(java.lang.String[]);

 Code:

 0: new #2 // class com/jdojo/blogs/methodbinding/Manager

 3: dup

 4: invokespecial #3 // Method

com/jdojo/blogs/methodbinding/Manager."<init>":()V

 7: astore_1

 8: sipush 12000

 11: istore_2

 12: aload_1

 13: iload_2

 14: i2d

 15: invokevirtual #4 // Method com/jdojo/blogs/methodbinding/Employee.setSalary:(D)V

 Understanding Method Binding in Java By Kishori Sharan

 18: return

}

We are interested only in the following line in the dissembled code.

15: invokevirtual #4 // Method com/jdojo/blogs/methodbinding/Employee.setSalary:(D)V

This is the byte code instruction that is generated for the statement emp.setSalary(salary) in the

Test class. The last part setSalary(D)V means a setSalary method, which accepts a double (D

for double) parameter and returns void (V for void). The instruction invokevirtual indicates that the

actual implementation of the setSalary() method will be decided at runtime.

When the Java runtime tries to execute the above byte code instruction for the

emp.setSalary(salary) statement, it finds that emp is referring to an object of the Manager class.

The runtime looks for a setSalary(D)V method in the Manager class. Since the Manager class has a

setSalary(I)V method (I for int), the runtime does not find a matching method in the Manager class.

Now, the runtime moves one level up in the class hierarchy and looks for setSalary(D)V method in the

Employee class and it finds it. So, the runtime decides to execute the implementation of the

setSalary(double) method in the Employee class, and hence, you get the message “Inside

Employeee.setSalary()” printed on the standard output.

The declaration of the setSalary(int) method in the Manager class is an example of method

overloading, and not method overriding. The Manager class has two setSalary() methods - a

setSalary(double) inherited from the Employee class and a setSalary(int) declared in it. If you

apply the logic discussed above, you should not have any problems in deciding which method will be
called as part of a method call.

To give a new twist to our discussion, let us consider a little variation of the Test class, which we call

Test2.as listed in Listing 4.

Listing 4: Test2 class

// Test2.java

package com.jdojo.blogs.methodbinding;

public class Test2 {

 public static void main(String[] args) {

 /* Create a new Manager object and assign its reference to a variable

 of Employee type

 */

 Employee emp = new Manager();

 /* Call the setSalary() method */

 int salary = 12000;

 ((Manager)emp).setSalary(salary); /* Which setSalary() method is

 called. Employee.setSalary() or

 Manager.setSalary()

 */

 }

}

Output:

www.jdojo.com Page 5 of 6

 Understanding Method Binding in Java By Kishori Sharan

Can you tell what is printed when the Test2 class is run?

Can you explain the output when the Test2 class is run? It is easy. The Test2 class has only one

statement that is different from the Test class. It calls the setSalary(salary) method on the

(Manager)emp expression instead of the emp expression. All you need to decide is - what is the

compile-time type of the expression (Manager)emp. When you use a cast, the compile-time type of the

expression is the cast type itself. That is, the compile-time type of the expression (Manager)emp is

Manager. Therefore, the compiler will bind the setSalary(salary) method call to the

setSalary(int) method of the Manager class. You can confirm this by dissembling the Test2 class

using the javap tool, which outputs the following instruction. The last part setSalary(I)V means - a

setSalary() method, which accepts an int (I for int) parameter and returns void (V for void).

17: invokevirtual #4 // Method com/jdojo/blogs/methodbinding/Manager.setSalary:(I)V

When the java runtime attempts to bind the setSalary(salary) call, it looks for s setSalary(I)V -

starting from the Manager class and searching up the class hierarchy if not found. In this case, the

runtime finds a setSalary(I)V method in the Manager class, and executes that method, which prints

“Inside Manager.setSalary()”.

In the case of a static method, everything for a method call - the method signature and the method
implementation, is decided by the compiler based on the compile-time type of the expression on which
the static method call is made. With this knowledge in your armory, you can master the method binding

mechanism for static methods yourself. You are advised to add a static method to the Employee class

and hide it in the Manager class by declaring a static method with the same name. Call that static method

in a class, say Test3. Use the javap tool to dissemble the code for Test3 class and see if the result

matches your understanding of the method binding.

 Understanding Method Binding in Java By Kishori Sharan

Useful Links

Author’s website www.jdojo.com

Contacting the Author ksharan@jdojo.com

Author’s All Blogs http://jdojo.com/feed/

Subscribing to Author’s Blogs (RSS Feed) http://jdojo.com/feed/

Downloading Sample Chapters of
Harnessing Java 7 Book

http://jdojo.com/sample-chapters/

Purchasing Author’s Books at Amazon http://www.amazon.com/Kishori-
Sharan/e/B006Z81X7K/ref=ntt_athr_dp_pel_1

http://www.jdojo.com/
mailto:ksharan@jdojo.com
http://jdojo.com/feed/
http://jdojo.com/feed/
http://jdojo.com/sample-chapters/
http://www.amazon.com/Kishori-Sharan/e/B006Z81X7K/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Kishori-Sharan/e/B006Z81X7K/ref=ntt_athr_dp_pel_1

	Understanding Method Binding in Java

