
 Watching Directories for Modifications in Java 7 By Kishori Sharan

Watching Directories for Modifications in Java 7

By Kishori Sharan Published on: March 20, 2012 at www.jdojo.com

--- -----

NIO 2.0 in Java 7 added support for directory change notification known as a watch service. It lets you
receive notifications, when a directory is modified. There are six steps needed to setup a watch service.

 Creating a watch service

 Registering a directory with the watch service

 Retrieving a watch key from the watch service queue

 Processing the events that occurred on the registered directory

 Resetting the watch key after processing the events

 Closing the watch service

A watch service is an instance of the WatchService interface. You can create a watch service for the

default file system as:

WatchService ws = FileSystems.getDefault().newWatchService();

Registering a directory to a watch service is simply calling the register() method of the Path object

that represents the directory to watch. You can specify the operations for which you would like to watch

the directory. The register() method returns a WatchKey instance that serves as a token for the

registration.

// Get a Path object for C:\kishori directory to watch

Path dirToWatch = Paths.get("C:\\kishori");

// Register the dirToWatch for create, modifiy and delete events

WatchKey token = dirToWatch.register(ws,

 ENTRY_CREATE,

 ENTRY_MODIFY,

 ENTRY_DELETE);

You can use the take() or poll() method of the WatchService object to retrieve and remove a

signaled and queued WatchKey. The take() method waits until a WatchKey is available. The poll()

method lets you specify a timeout for the wait. Typically, an infinite loop is used to retrieve a signaled

WatchKey.

while(true) {

 WatchKey key = ws.take(); // Retrieve and remove the next available

 // WatchKey from the watch service

}

Once you retrieve and remove a WatchKey from the watch service queue, you can retrieve and remove

all pending events for that WatchKey. A WatchKey may have more than one pending events. The

pollEvents() method of the WatchKey retrieves and removes all its pending events. It returns a List

of WatchEvent. Each element of the List represents an event on the WatchKey. Typically, you will

http://jdojo.com/
http://www.jdojo.com/

 Watching Directories for Modifications in Java 7 By Kishori Sharan

need to use the kind(), context(), and count()methods of the WatchEvent object to know the

details of the event. The following snippet of code shows the typical logic for processing an event.

while(true) {

 // Retrieve and remove the next available WatchKey

 WatchKey key = ws.take();

 // Process all events of the WatchKey

 for(WatchEvent<?> event : key.pollEvents()) {

 // Process each event here

 }

}

You must reset the WatchKey object by calling its reset() method, so it may receive event notifications

and be queued to the watch service again. The reset() method puts the WatchKey into a ready state.

The reset() method returns true, if the WatchKey is still valid. Otherwise, it returns false. A

WatchKey may become invalid, if it is cancelled or its watch service is closed.

// Reset the WatchKey

boolean isKeyValid = key.reset();

if (!isKeyValid) {

 System.out.println("No longer watching " + dirToWatch);

}

When you are done with the watch service, close it by calling its close() method. You will need to

handle the java.io.IOException, when you call its close() method.

// Close the watch service

ws.close();

Listing -1 has a complete program that watches a C:\kishori directory for changes. It uses a try-

with-resources statement to work with the WatchService object. You can replace the directory path

in the Watcher class with the directory path that you want to monitor. You will need to make changes to

the watched directory, e.g., create a new file, and change an existing file, after you run the Watcher

class. The output will show the details of the event that occur on an entry in the watched directory.

Listing -1: An example of implementing a watch service to monitor changes in a directory

// Watcher.java

package com.jdojo.chapter11;

import java.nio.file.WatchEvent.Kind;

import java.io.IOException;

import java.nio.file.FileSystems;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.WatchService;

import java.nio.file.WatchEvent;

import java.nio.file.WatchKey;

import static java.nio.file.StandardWatchEventKinds.ENTRY_CREATE;

import static java.nio.file.StandardWatchEventKinds.ENTRY_MODIFY;

import static java.nio.file.StandardWatchEventKinds.ENTRY_DELETE;

import static java.nio.file.StandardWatchEventKinds.OVERFLOW;

public class Watcher {

www.jdojo.com Page 3 of 5

 Watching Directories for Modifications in Java 7 By Kishori Sharan

 public static void main(String[] args) {

 try (WatchService ws =

 FileSystems.getDefault().newWatchService()) {

 // Get a Path object for C:\kishori directory to watch

 Path dirToWatch = Paths.get("C:\\kishori");

 // Register the dirToWatch with the watch service

 // for create, modifiy and delete events

 dirToWatch.register(ws, ENTRY_CREATE, ENTRY_MODIFY,

 ENTRY_DELETE);

 System.out.println("Watching for events on " + dirToWatch);

 // Keep watching for events on the dirToWatch

 while(true) {

 // Retrieve and remove the next available WatchKey

 WatchKey key = ws.take();

 for(WatchEvent<?> event : key.pollEvents()) {

 Kind<?> eventKind = event.kind();

 if (eventKind == OVERFLOW) {

 System.out.println("Event overflow” +

 “ occurred");

 continue;

 }

 // Get the context of the event, which is the

 // directory entry on which the event occurred.

 WatchEvent<Path> currEvent =

 (WatchEvent<Path>)event;

 Path dirEntry = currEvent.context();

 // Print the event details

 System.out.println(eventKind +

 " occurred on " + dirEntry);

 }

 // Reset the key

 boolean isKeyValid = key.reset();

 if (!isKeyValid) {

 System.out.println("No longer watching " +

 dirToWatch);

 break;

 }

 }

 }

 catch (IOException | InterruptedException e) {

 e.printStackTrace();

 }

 }

}

Output: (You may get a different output.)

 Watching Directories for Modifications in Java 7 By Kishori Sharan

Watching for events on C:\kishori

ENTRY_CREATE occurred on test.txt

ENTRY_DELETE occurred on test.txt

www.jdojo.com Page 5 of 5

 Watching Directories for Modifications in Java 7 By Kishori Sharan

Useful Links

Author’s website www.jdojo.com

Contacting the Author ksharan@jdojo.com

Author’s All Blogs http://jdojo.com/feed/

Subscribing to Author’s Blogs (RSS Feed) http://jdojo.com/feed/

Downloading Sample Chapters of
Harnessing Java 7 Book

http://jdojo.com/sample-chapters/

Purchasing Author’s Books http://www.jdojo.com/purchase

http://www.jdojo.com/
mailto:ksharan@jdojo.com
http://jdojo.com/feed/
http://jdojo.com/feed/
http://jdojo.com/sample-chapters/
http://www.jdojo.com/purchase

	Watching Directories for Modifications in Java 7

